A Statistical Approach to Thermo-Osmosis

Pietro Anzini, Gaia Maria Colombo, Zeno Filiberti, Alberto Parola

TPCE19 September 5th, 2019




Fluids in thermal gradients

A bulk fluid placed in a temperature gradient reaches a steady state characterized by

Heat flow but no mass flux

But confining surfaces make the difference
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Gases: Physical Picture

v The study of thermo-osmosis in gases began in the late 1800, when
Maxwell and Reynolds started an intense debate about the radiometer

v" Thermo-osmosis critically depends on particle-surface interaction
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The gas is set into motion in the direction of the thermal gradient

v By means of kinetic theories Maxwell predicted the slip velocity
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Liquids: Derjaguin’s Approach

11.4. THERMO-OSMOSIS, THE MECHANOCALORIC EFFECT,
AND THERMOPHORESIS

The phenomenon of [thermo-osmosis| defined as the flow of a
liquid, driven by a temperature gradient, through capillaries or
porous bodies, |appears because the specific enthalpy of the liquid |

| in boundary layers and thin pores differs by AH from the bulk value|
The theory of thermo-osmosis

and other thermokinetic phenomena was developed in [46] on the

basis of [nonequilibrium thermodynamics|

46. B. V. Derjaguin and G. P. Sidorenkov, Dokl. Akad. Nauk SSSR, 32, 622 (1941). B-V.Derjaguin
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Liquids: Experiments and Simulations

v' Many experimentsin membranes

v’ First microscale observation of thermo-osmosis *
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Thermo-osmosis has been theoretically investigated for a long time

BUT...

Gases

= The theoreticalapproachis based on kinetic equations

= Good agreement with experiments

= The effect is driven by the specificity of the atom-surface scattering
= Therelevantlength-scaleis the mean free path

Liquids
= Derjaguin’stheory is based on macroscopic irreversible thermodynamics
= Very few experiments/simulations

= The effect is driven by the anisotropies of the pressure tensor near the surface
= Therelevantlength-scaleis the correlation length

Unified picture ?
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STEP O: System and Method

v' We consider the simplest geometry: infinite open channel

v' We impose a thermal gradient alongthe x-direction
v" We restrict to the study of the stationary state

Theoretical tool

Linear response theory (Kubo-Mori)

generalized to anisotropic environments
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STEP 1: Stationary Averages

Local Thermal Equilibrium

If the thermodynamic variables(e.g. temperature) are space dependent
the distribution function must be modified as:

FLE — le— [drB(r)E@™)
YA
V4 T~
temperature field local energy density

The occurrence of a thermal gradientinduces wu(r) velocity field
u(r) local chemical potential

Er)=H@) — j@) -ulr) — ul) p(r)

\ \ Particle density

Hamiltoniandensity Momentum density

P ILIGEED D motr=r)

The distribution function depends on the five external fields: B(r), u(r), u(r)
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STEP 1: Stationary Averages

Linear Response Theory
The goal is to study the stationary flow: the Local Thermal Equilibrium A

distributionis not stationary!

Hazime Mori' (1958): averages in stationary states expressed in terms of
dynamical correlations at equilibrium

Example: mass current (planar geometry)

(j*(2)) = po(z) u*(z) < Local Thermal Equilibrium

" j ar f dr' (5, t) J5 () Yo 9 B(x") coupling to
0

energy flux

momentum flux

_j dt’jdr’ <jx(r, tl) ]}CZ(T’) )0 OZI[,Bux] (Z’) coupling to
0

coupling to

B j a¢ J dr’ (j*(r,t") j*(r") )o 0, [Bu] (x') mass flux
0

According to LRT this expression is exact to linearorderin 4,8, u*, 0,u

T H. Mori, Phys. Rev. 112, 1829 (1958)
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STEP 2: External Fields

Conservation Laws

Linear response theory expresses averages B(1)? u(r)? u(r)?
in terms of correlations and external fields: unknown!

These fields are determined by the physical boundary conditions

The external fields are defined by the boundary conditions
via the continuity equations

M+ 0,(j*(r,t)) =0 mass conservation

OPHED) ) + 0 [0 ) + 0, (JFF(r D) ) = 0
ITFD ) + 077G D) ) + 0, (JP () ) = 0

@}@@ 4+ 0,(JE(r,t))=0 energy conservation

stationary limit
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STEP 3: Velocity Profile

v’ Planar geometry: non-trivial solutions for u*(z) with | 9,8 = const d,Uu = const

v' The velocity profile follows from the solution of the continuity equation for j*(7r):

h
dz' K(z,z") 0,u*(z") =00 S(2)
0 —

K(z,z)=p j dt’ j dr', ( Ji ]’-CZ (r,t)] }Cz () )0 (generalized viscosity)
0
R GEETEE T LR L ET Err STATIC =1 ;=========-==- DYNAMIC - - -
(Z 0 : I © I
S(z) = dz’' pT( ) jdr ]]xz(r)?(r’) ) | + j dt Jdr Ji#(r,t) ]5(1")) :
— 1 Jnp 0 1 Jo OI:

Dynamical correlation

Anisotropy of the
P(r) = hpp(r) — H(r) function at equilibrium

tangential pressure

Inbulk: S(z) =0 = u*(z) =
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Approximations: Liquids

v If we assume thatin liquids

_ 0 z ! /
= static and dynamic correlations can be 5(2) = P) ﬁ|p fh /2 dz pr(z’)
evaluated in bulk ,

» dynamic correlations are short-ranged K(z,z') =né(z—2")

d, T 0
R e T

h,
j dz' Min(z, z") [pr(z") — p]]
D 0

Agreement with Derjaguin’s approach
(based on nonequilibrium thermodynamics)

v’ Itis possible to give a rough estimate of the slip velocity:

u®* =~ 1 um/s

for 0,T ~ 10deg/cm

6 8 10

z |o]
Ganti, Liu and Frenkel, PRL 119, 038002 (2017)
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Approximations: Gases

In (almost) ideal gases the pressure tensor is isotropic also near the surface

Pr = PN =P —)

The only source term comes from dynamical correlations at equilibrium

S(z) = fo e [[ar (7o) J3a0),

Assumingthat after the impact the x-component Pout

of the particle’s momentum is completely uncorrelated

(i.e. exchange of momentum with the surface)

u* ~ 10 um/s

3nad,T
Vo = Z;T (parrallel to the gradient )
for 0,T ~ 10deg/cm
P = Patm
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Conclusions

Linear response theory provides a natural framework for a microscopic
quantitative description of the thermo-osmotic flow

Our results are exact to the first order in the fields

The emerging picture is more complex than expected on the basis of
the existing approaches (kinetic theory/irreversible thermodynamics)

The extent of the phenomenon depends on the behaviorof
dynamical correlations (transport coefficients) near the surface

The scattering processes at the confining surface plays a key role,
at leastin the rarefied limit

A guantitativeinvestigationin liquidsrequires the evaluation of the
tangential pressure. MD and DFT calculationsare in progress
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